Syllabus of 4 + 1 Year Integrated UG and PG Programme

w. e. f 2024-25 Academic Year

GRADUATE SCHOOL Mahatma Gandhi University P. D. Hills P O Kottayam, Kerala <u>www.gs.mgu.ac.in</u> <u>www.mgu.ac.in</u>

Schools offering Majors

SL.No	School/Centre
1	School of Bio Sciences
2	School of Chemical Sciences
3	School of Computer Sciences
4	School of Environmental Sciences
5	School of Gandhian Thought and Development Studies
6	School of International Relations and Politics
7	School of Pure and Applied Physics
8	School of Social Sciences

S1. No.	Major	Intake
	SCIENCE	
1	Bio Sciences	6**
2	Chemistry	6
3	Computer Science	6
4	Environmental Science	6
5	Physics	6
	SOCIAL SCIENCES	
1	Development Studies	5
2	Gandhian Studies	5
3	History	10
4	International Relations and Politics	10

Majors offered and Intake *1 seat shall be sanctioned over and above the intake in each major in the 3rd semester for students who opt for a change of major after two semesters.

**Progression to PG Shall be based on the specialization selected by students as Biochemistry (2 seats) Biotechnology (2 seats) and Microbiology (2 seats) based on merit.

Schools offering Minors/MDCs/AECs/VACs/SECs

SL.No	School/Centre
1	School of Artificial Intelligence And Robotics
2	School of Behavioural Sciences
3	School of Biosciences
4	School of Chemical Sciences
5	School of Computer Sciences
6	School of Data Analytics
7	School of Energy Materials
8	School of Environmental Sciences
9	School of Food Science And Technology
10	School of Gandhian Thought And Development Studies
11	School of Gender Studies
12	School of Indian Legal Thought
13	School of International Relations And Politics
14	School of Letters
15	School of Mathematics And Statistics
16	School of Nanoscience And Nano Technology
17	School of Pedagogical Sciences
18	School of Polymer Science And Technology
19	School of Pure And Applied Physics
20	School of Social Sciences
21	School of Tourism Studies
22	International and Inter University Centre for Nanoscience and Nanotechnology
23	K N Raj School of Economics

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University National Institute of Plant Science Technology

Course Code	Title	Credits	Hours pe	er Week	Level	Туре
			Theory	Practical s	-	
	:	SEMESTE	RI		1	1
MG1DSCUBP121	The science of plants	4	60	0	Foundation (100-199)	Minor
MG1DSCUBP141	Understanding Plant Physiology	4	60	0		Minor
MG1DSCUBP142	Essential Concept in Plant Biochemistry	4	60	0		Minor
MG1MDCUBP101	From Cells to Ecosystems	3	45	0		MDC
	S	SEMESTE	RII			
MG2DSCUBP121	Recent advances and applications in plant science	4	60	0		Minor
MG2DSCUBP141	Comprehensive Insights on Herbal Medicine	4	60	0		Minor
MG2MDCUBP101	Fungi: From Culinary Delights to Biotechnological Marvels	3	45	0		MDC
	S	EMESTEI	RIII			1
MG3DSCUBP221	Economic and Biotechnological Opportunities of Thallophytes	4	40	20	Intermediat e (200-299)	Minor
MG3MDCUBP201	Taming the Invaders: Strategies for Invasive Species	3	45	0		MDC

	Management					
MG3VACUBP201	Cells in Bloom: Mastering the Techniques of Tissue Culture	3	30	15		VAC
	S	SEMEST	TER IV			
MG4DSCUBP241	An introduction to vascular cryptograms	4	45	15	"	Minor
MG4SECUBP201	Insights into Phytochemical Isolation	3	30	15		SEC
MG4VACUBP201	Horticulture and nursery management	3	45	0		VAC
		SEMES	FER V			
MG5SECUBP301	Techniques for Advanced Plant Research	3	35	10	Higher (300-399)	SEC
MG5VACUBP301	The Essentials of Organic Farming	3	35	10		VAC
	S	SEMEST	TER VI			
MG6SECUBP301	Conservation Biology	3	35	10		SEC
MG6SECUBP302	Ecotourism: A new possibility in Kerala	3	35	10		SEC
Tota	l Credits	58				

SEMESTER VII							
MG7DSCUBP421	Angiosperm- The flowering plants & biodiversity assessment	4	45	15	Advance d (400- 499)	Minor	
Total Credits		4					

*Only for 4-Years Honours Students **Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level	Foundati (100-19		Intermo (200-2		(Higher 300-399)	Advanced (400-499)	PG Level (500- 599)
Туре	Major	Mi	nor	MDC		SEC	VAC	AEC

Pererer Sugarum-te	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology (NIPST)					
Programme	M.Sc. Botany & Plant Science Technology					
Course Title	The Science of Plants					
Course Type	Minor					
Course Level	100-199					
Course Code	MG1DSCUBP121					
Course Overview	This is a foundational concerning the basics of production to the way has objective of the study is to produce food, alter environ improve human health as environments, and provide the public.	olant science. ow plants live understand ho ments, restore nd well-being,	It gives a general and reproduce. The ow plants are used to damaged landscapes, improve community			
Semester	1	Credit	4			
Total Student Learning Time	Instructional hours for theory 60		ctional hours for al/lab work/field work			
Pre-requisite						

Basics of Biology in the 12 th standard

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learnin g Domain s	PSO No.
1	CO1: To impart knowledge on origin, evolution, structure, reproduction of plants and phytogeography	R/U	
2	CO2: Understand the plant diversity and its classification	R/U/An	
3	CO3: Identify the various areas allied to plant science	U/An/A	
4	CO4: Analyse how plants and humans are interdependent	R/U/A	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
Plant life:	20 hr	
Why life in plants and animals, differences between plants and animals. Source of energy to life – producers.		1
Origin of life, origin of plants / photosynthesis.		
Non motile life forms – rigid cells, tissue and structures – absorptive and assimilatory regions. Aquatic and terrestrial plant forms		
Plant associations – forests, various forms, phytogeography - endemism		
Reproduction – fertilization and meiosis. alternation of generations, life cycles.		

Module 2	Hours	
Diversity of plant life:	15 hr	
Various groups of plants- algae, fungi, bryophytes, Pteridophytes, gymnosperms, and angiosperms.		2
Plant taxonomy and classification Biosystematics		
Module 3	Hours	
Branches of plant science:	10 hr	
Morphology, Anatomy, Plant physiology, Plant biochemistry, Plant genetics, Plant breeding, Plant ecology, Horticulture, Plant biotechnology, Plant evolution, etc.		3
Module 4	Hours	
Plants and human beings:	15 hr	
Plant diversity and human welfare – Economic botany, ecosystem services – climate change and global warming.		4
Plants: various sources of human needs – food, shelter, medicine etc.		
Future prospects in plant science studies.		

Mode of Transaction	Classroom activities: Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative Field activities:
	Lab based activities:
Mode of Assessment	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - 10 mark Write a detailed report on a given topic based on research findings-10 marks
	Semester End examination – 60 marks

- 1. The science of plants: Inside Their Secret World by Katherine J. Willis, DK publishers, 2022, ISBN 0744048435
- 2. Textbook of Botany by O. P Sharma, Vol.1, 2nd Edn, 2023
- 3. An introduction to plant biology by James D. Mauseth, ISBN 9781449648848, 2012

Relevance of Learning the Course/ Employability of the Course

'*The Science of Plants*' helps the students to understand the mysterious inner workings of the plant world. The topics covered in this course are relevant for an introductory plant science class at an undergraduate level.

Ангин энрагия-за	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science	Tecł	nnology(NIPST)
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Understanding Plant Physiology			
Course Type	Minor			
Course Level	100-199			
Course Code	MG1DSCUBP141			
Course Overview	of plants. The course covers the r and responses to environmental s physiological processes that ur	uction nech timu nderp	n to the vital processes and functions aanisms of plant growth, development, ali, with a focus on the biochemical and pin these functions. This course is each module covering specific areas of	
Semester	1	Cre	dit	4
Total Student Learning Time	Instructional hours for theory 60		Instructional hours for practical/lab work/field work 0	
Pre-requisite				
	Understanding of basic science			

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;	_	
1	Understand the fundamental physiological processes in plants.	R/U	
2	To understand and explain the mechanisms of different metabolism in plants and also their variations across different environmental conditions and plant types.	U/A	
3	To identify plant hormone responses	R/U/A	
4	Analyze how plants respond to environmental stimuli and stress conditions.	U/An	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
WaterTransport:Basics of water movement in plants, Transpiration and its role in water movement	10 hr	
Nutrient Transport: Essential nutrients for plants, Mechanisms of nutrient uptake		1
Module 2	Hours	
Photosynthesis: Overview of chloroplasts and photosynthetic pigments, Light-dependent and light-independent reactions (Calvin cycle), Differences between C3, C4, and CAM plants Respiration: Cellular respiration process: glycolysis, Krebs cycle,Role of mitochondria, electron transport chain.	20 hr	1, 2
Module 3	Hours	
Nitrogen metabolism: Atmospheric nitrogen fixation, nitrogen cycle, nitrogen assimilation	20 hr	1, 2

Growth and Development: Cell division and expansion, Differentiation and morphogenesis, Root and shoot growth patterns Module 4		
Module 4		
	Hours	
Plant-Environment Interactions: Plant stress, Responses to light, 1 temperature, and water availability Plant-microbe interactions: symbiosis and pathogenesis	10 hr	4

Mode of Transaction	Classroom activities:Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative Field activities:
Mode of Assessment	Lab based activities Continuous Internal Assessment (CIA)
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - 10 mark
	3. Write a detailed report on a given topic based on research findings-10 marks Semester End examination – 60 marks

- 1. Heldt, Hans-Walter, and Birgit Piechulla. Plant biochemistry. Academic Press, 2021.
- 2 Taiz L and E Zeiger (2010) Plant Physiology, Sinauer Associates
- 3. Peter Scott (2008) Physiology and Behaviour of Plants, Wiley-Blackwell

Relevance of Learning the Course/ Employability of the Course

Understanding plant physiology is crucial for undergraduate students as it provides essential knowledge about how plants function, grow, and interact with their environment, forming the basis for advances in agriculture, biotechnology, and environmental science.

Rear Syrthart	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science	Technology(N	NIPST)	
Programme	4 +1 integrated UG and PG progra	mme	2	
Course Title	Essential Concepts in Plant Bioche	mistry		
Course Type	Minor			
Course Level	100-199			
Course Code	MG1DSCUBP142			
Course Overview		es essential fo	ssential for biological systems. Topics	
Semester	1	Credit		4
Total Student Learning Time	Instructional hours for theory	Instruc	Instructional hours for practical/lab work/field work	
	60		0	
Pre-requisite	Understanding of basic science			

со	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	Upon completion of this course, students will be able to;	_	
1	To understand the diverse array of biomolecules essential	U	1

	for life		
2	Describe the structure, function, and classification of biomolecules.	U/A	1,2
3	To elucidate how various biomolecules interact and collaborate within intricate living systems to execute coordinated functions	A/An	1,2
4	To contrast the structures and functionalities of biomolecules within plant systems.	A	1,3

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No	
Carbohydrates: Classification, monosaccharides, open chain and cyclic structures, epimers and anomers, mutarotation, reactions of carbohydrates (due to functional groups - hydroxyl, aldehyde and ketone). Structure and biological importance of disaccharides (sucrose, lactose, maltose), structural polysaccharides (cellulose, chitin, pectin) and storage polysaccharides (starch, inulin), Glycosides	20 hr	1,2,3,4	
Module 2	Hours		
Amino acids & Proteins: Structure, function and classification of amino acids, Peptides: Formation of peptide bond. Proteins: Classification based on solubility, shape and function. Structural organization of proteins- primary, secondary, tertiary and quaternary structures.	15 hr	1,2,3,4	
Module 3	Hours		
Lipids -Lipids: Classification of lipids with examples, classification of fatty acids, chemical constants of fatty acids-saponification number, acid number, iodine number and their application. Steroids: Structure of steroid nucleus:- cholesterol, ergosterol, stigmasterol	20 hr	1,2,3,4	
Module 4	Hours		
Nucleic Acids: Nature of nucleic acids, Structure of purines and pyrimidines, nucleosides, nucleotides, Stability and formation of Phosphodiester linkages, Watson -Crick model of DNA structure. Types of DNA and RNA	5 hr	1,2,3,4	

Mode of	
	Classroom activities: Direct Instruction: Brainstorming lecture, Explicit Teaching,

Transaction	E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative Field activities: Lab based activities	
Mode of Assessment	Continuous Internal Assessment (CIA)	
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar-Maximum marks 10 	
	3. Write a detailed report on a given topic based on research findings - Maximum marks 10	
Looming Docour	Semester End examination – 60 marks	

1. Lehninger Principles of Biochemistry, Fourth Edition by David L. Nelson, Michael M. CoxPublisher: W. H. Freeman; Fourth Edition edition (April 23, 2004) ISBN-10: 0716743396 ISBN-13: 978-0716743392

2. Biochemistry 6th Edition (2007) by Jeremy M.berg John L.tymoczko Lubert Stryer Publisher: B.i.publicationsPvt.Ltd ISBN:071676766X ISBN-13: 9780716767664, 978-716767664

Relevance of Learning the Course/ Employability of the Course

Studying essential concepts in plant biochemistry is crucial for undergraduate students as it provides a foundational understanding of the biomolecules that drive plant life processes.

Recent Segurants	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology(NIPST)			
Programme	4 +1 integrated UG and PG programme			
Course Title	From Cells to Ecosystems			
Course Type	MDC			
Course Level	100-199			
Course Code	MG1MDCUBP101			
Course Overview	This interdisciplinary course offers a comprehensive exploration of biological systems, with a specific focus on plant biology, ranging from cellular processes to ecosystem dynamics. Students will delve into the structure and function of plant cells, population ecology, community interactions, and ecosystem processes. Emphasis will be placed on understanding plant- specific concepts and their ecological significance.			
Semester	1	Cre	redit 3	
Total Student Learning Time	Instructional hours for theory 45		Instructional hours for practical/lab work/field work 0	
Pre-requisite	High school biology or equivalent			

СО	Expected Course Outcome	Learning	PSO No.

No.		Domains
	Upon completion of this course, students will be able to;	
1	Understand the organization and functioning of plant cells and their organelles	R/U/An
2	Examine the organization of plants at tissue, organ, and system levels and their adaptation patterns	U/An
3	Investigate plant population dynamics, community ecology, and ecosystem processes.	R/U/An
4	Analyze the ecological significance of plants in terrestrial and aquatic ecosystems.	U/An/A

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
Cell Structure: Cell structure and function, Organelles and their roles	10 hr	1
Module 2	Hours	
Plant Organ Systems and Adaptations: Plant tissue organization, Root and shoot systems, Leaf anatomy and function, Morphological adaptations in plants	10 hr	1, 2
Module 3	Hours	
 Co-evolution and Plant-Animal Interactions: Coevolution with pollinators, Co-evolution with herbivores, Mutualistic relationships (e.g., seed dispersers, protective ants) Plant Ecology and Community Dynamics: Plant population dynamics, Plant community structure and interactions, Plant communications 	15 hr	2, 3,4
Module 4	Hours	
Plant Ecosystems and Environmental Interactions: Plant roles in terrestrial and aquatic ecosystems, Energy flow and nutrient cycling in plant ecosystems, Human impacts on plant communities and ecosystems	10 hr	3, 4

Mode of Transaction	Classroom activities:Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active cooperative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative Field activities:				
	Lab based activities				
Mode of Assessment	Continuous Internal Assessment (CIA)				
	1. Internal Tests of maximum 20 marks				
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - 10 mark				
	3. Write a detailed report on a given topic based on research findings-10 marks				
	Semester End examination – 60 marks				

1. Molecular Biology of the Cell by Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, and Peter Walter

2. Botany: An Introduction to Plant Biology" by James D. Mauseth.

3. Community Ecology by Gary G. Mittelbach and Brian J. McGil

Relevance of Learning the Course/ Employability of the Course

The course "From Cells to Ecosystems" is highly relevant for undergraduate students, offering a well-rounded education in biology that spans from cellular mechanisms to ecological interactions.

THERMI SHERING	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology (NIPST)			
Programme	M.Sc. Botany & Plant Science Technology			
Course Title	Recent advances and applications in plant sciences			
Course Type	Minor			
Course Level	100-199			
Course Code	MG2DSCUBP121			
Course Overview	The aim of this course is to and will transform plant sci new biology. This course a regarding current technologi where we may go in the futu of what is at and beyond the	ence to addre assesses whe es and to add re and whethe	ess the challenges of ere we stand today lress questions about	
Semester	2	Credit	4	
Total Student Learning Time	Instructional hours for theoryInstructional hours practical/lab work/fi work600		cal/lab work/field work	
Pre-requisite	Understanding of basic scier	nce		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;		
1	CO1: Understand the history and gap areas of plant science research	R/U	
2	CO2: Analyse the recent advances in plant science and the future prospects	R/U/An	
3	CO3: Understand the interdisciplinary perspectives in plant science	U/An/A	
4	CO4: Identify the new technologies and its applications for betterment of humankind	R/U/A	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
History of plant science researches:	10 hr	
Major findings and milestones of plant science research.		
Important scientists and their contributions		1
Gap areas in plant science research.		
21 st Century the 'Bio Century'		
Module 2	Hours	
Recent advances in plant science research:	10 hr	
New areas of research – nano biotechnology, forensic science, climate		2
change-carbon sink, plants and global warming.		

Hours 20 hr	
00 h#	
20 nr	
	3
Hours	
	4
	Hours 20 hr

Mode of	Classroom activities: Direct Instruction: Brain storming lecture, Explicit
Transaction	Teaching, E-learning, interactive Instruction:, Active co-operative learning,
	Seminar, Group Assignments Authentic learning, , Library work and Group
	discussion, Presentation by individual student/ Group representative
	Field activities:

	Lab based activities:
Mode of	Continuous Internal Assessment (CIA)
Assessment	1. Internal Tests of maximum 20 marks
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10
	3. Write a detailed report on a given topic based on research findings -10 mark
	Semester End examination – 60 marks

1. Bulchandani, Bhagwan & Chahal, Kavita & Parashurama, Dr. T.R & Patil, Minal. (2022). Advances in Plant Science Volume IV.

2. Technological Advancements in Plant Sciences by Raghvendra Pratap Narayan, Durgesh K. Tripathi, Rajarshi Kumar Gaur

3. Plant biotechnology: the genetic manipulation of plants, 2nd edn by Adrian slatter, oxford publishers

Plant science is a forerunning field of study that could address the foremost disputes facing humanity in the 21st century; coupled with the development of new tools and techniques, it could aid in finding solutions to diagnose these unsolved questions. This course summarizes the recent technological advances of plant science.

Ангин энрагия-за	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology(NIPST)		
Programme	4 +1 integrated UG and PG programme		
Course Title	Comprehensive Insights into Herbal Medicine		
Course Type	Minor		
Course Level	100-199		
Course Code	MG2DSCUBP141		
Course Overview	This course provides an in-depth exploration of herbal medicine, encompassing the principles, practices, and applications of traditional and modern herbal remedies. Students will gain comprehensive insights into the botanical, chemical, pharmacological, and therapeutic aspects of medicinal plants, along with their cultural, historical, and ethical dimensions.Gain knowledge of the historical, cultural, and philosophical foundations of herbal medicine.		
Semester	2	Credit	4
Total Student Learning Time	Instructional hours for theory	Instruct	ional hours for practical/lab work/field work 0
Pre-requisite	High school biology or equivalent		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;	-	
1	Explore the historical and cultural importance of herbs in various civilizations and their significance in traditional medicine systems	R/U	
2	Conduct a comprehensive study of medicinal plants in Kerala.	R/U/A	
3	Explore the chemical constituents, pharmacological properties, and analytical techniques used in the study of medicinal plants.	U/A/An	
4	Investigate the common herbal remedies, evidence-based medicine, and safety considerations associated with herbal therapy.	U/A/E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
Introduction to Herbal Medicine: Historical and cultural significance of herbs in human civilization, Introduction to Indian medical system	10	1
Module 2	Hours	
Indigenous Herbal Medicines of Kerala: An In-Depth Study of Key Medicinal Plants:- Dashapushpam, Kanikkonna -Thumba - Kadaladi- Erukku- Karinochi Kattar Vazha- Veppu-Manjal- (Kasthuri Manjal - Mara Manjal) Shankhu Pushpam- Vayambu- Chembaratti -Tottavadi - Adalodakam Nalikeram- Muttanga- Patha thali- Naruneendi - Vayalchulli Shatavari- Kurunthotti- Avanakku- Brahmi/ Kudangal- Puliyaral	20	1, 2
Module 3	Hours	
Phytochemical Analysis: Chemical constituents of medicinal plants,	20	2, 3

Pharmacological properties, Analytical techniques		
Module 4	Hours	
Therapeutic Applications: Common herbal remedies and their uses, Evidence-based medicine in herbal therapy, Safety considerations and adverse effects, Ethnomedicine	10	2, 3, 4

Mode of Transaction	Classroom activities: Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
	Field activities:
	Lab based activities
Mode of Assessment	Continuous Internal Assessment (CIA)
	1. Internal Tests of maximum 20 marks
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - 10 mark
	3. Write a detailed report on a given topic based on research findings-10 marks
	Semester End examination – 60 marks

1. The Ayurvedic Pharmacopoeia of India by The Government of India

2. Medicinal Plants of Kerala: A Handbook by V. Sasidharan

3.Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis by J.B. Harborne

Relevance of Learning the Course/ Employability of the Course

By studying this course, students not only gain valuable knowledge about the medicinal plants of Kerala but also develop a holistic understanding of the interplay between traditional practices,

modern science, and sustainable development.

Rear Synnard	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology(NIPST)			
Programme	4 +1 integrated UG and PG programme			
Course Title	Fungi: From Culinary Delights to B	ioteo	chnological Ma	arvels
Course Type	MDC			
Course Level	100-199			
Course Code	MG2MDCUBP101			
Course Overview	This course focuses on the culinary aspects of fungi, exploring their diversity, flavors, and culinary applications in various cuisines around the world. Students will learn about different types of culinary fungi, their cultivation, culinary techniques, and their role in creating exquisite dishes and culinary masterpieces.			
Semester	2	Cre	dit	3
Total Student Learning Time	Instructional hours for theory		Instructional hours for practical/lab work/field work	
Pre-requisite	High school biology or equivalent			

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	

	Upon completion of this course, students will be able to;	
1	Provide an overview of fungal classification, diversity,	R/U/An
	morphology, life cycle and its importance	
2	Introduce students to culinary fungi, including cultivation	U/A
	methods, flavor profiles, and culinary applications.	
3	Explore the role of molds and yeasts in fermentation	U/A
	processes and introduce fungal delicacies from diverse	
	culinary traditions.	
4	Discuss the industrial and environmental applications of	U/A/E
	fungi in biotechnology, including fermentation,	
	bioremediation, and pharmaceutical production.	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
Introduction to Fungi: Fungal classification and diversity, Basic fungal morphology and life cycle	10	1
Module 2	Hours	
Culinary Fungi: Introduction to Culinary Fungi, Edible mushroom, Nutritional Value of Mushrooms, Preservation and Storage of Mushrooms, Gourmet mushrooms: cultivation, flavors, and culinary uses, Fungal delicacies from around the world, Foraging for Wild Mushrooms, Quorn	20	1,2
Module 3	Hours	
Fungi in Fermented foods: Health benefits of fermented food, Fermentation chemistry, Role of molds and yeasts in fermentation processes	15	1, 2, 3,4
Biotechnological Applications of Fungi: Industrial fermentation- production of enzymes, antibiotics, and biofuels, Bioremediation: fungal degradation of environmental pollutants, Fungi in		

Mode of Transaction	Classroom activities: Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, interactive Instruction:, Active co-operative learning, Seminar, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative
	Field activities: Lab based activities
Mode of Assessment	Continuous Internal Assessment (CIA)
	 Internal Tests of maximum 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a
	paper and present in the seminar - 10 mark 3. Write a detailed report on a given topic based on research findings-10 marks
I	Semester End examination – 60 marks

1. Presscott/Harley/Klein's Microbiology - Joanne Willey, Linda Sherwood and ChrisWoolverton.

2. On Food and Cooking: The Science and Lore of the Kitchen by Harold McGee

Relevance of Learning the Course/ Employability of the Course

The Course provides a multifaceted understanding of fungi, highlighting their importance in food science, medicine, industry, and environmental sustainability.

MAHATMA GANDHI UNIVERSITY Graduate School

4+1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology (NIPST)			
Programme	M.Sc. Botany & Plant Science To	M.Sc. Botany & Plant Science Technology		
Course Title	Economic and Biotechnological Opportunities of Thallophyta			
Course Type	Minor			
Course Level	200-299			
Course Code	MG3DSCUBP221			
Course Overview	This is a foundational course for undergraduate students, covering the basics of plant science. It gives a general introduction to the way how the thallophytes are beneficial to mankind. The objective of the study is to understand how primitive plants are used as food, how they conserve the environments, improve and restore the atmospheric quality and helpful for human to lead a healthy life.			
Semester	3	Cr	edit	4
Total Student Learning Time	Instructional hours for theory Instructional hours for practi work/field work		-	
	40		20	
Pre-requisite	Basics of Biology in the 12 th standard			

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO No.	
No.	Upon completion of this course, students will be able to :-	Domains		
1	CO1: Understand the diversity and its classification of thallophytes	R/U/An	3, 4	
2	CO2: To impart knowledge on the habitat, habit structure, reproduction and life cycle of beneficial thallophytes	R/U	1	
3	CO3: Identify the various economic opportunities provided by Thallophytes	U/An/A	1,2	

4	CO4: Analyse how thallophytes and humans are interdependent	R/U/A	5	
---	--	-------	---	--

^{*(}Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S))

COURSE CONTENT

Module 1 : Algae	Hours	CO No
 Major Classes of Algae: General Features of Major Classes, their habitat, habit, cell structure, reproduction & life cycle. Ecological and Economic Importance of Algae. Productivity of fresh water and marine environment Algae in polluted habitat, Algal blooms, algal bioremediation – algae as ecological indicators. Algae as food, fodder, biofertilizer, medicine, industrial uses and fuel from algae. 	25	1
Module 2: Fungi		
Introduction to Fungi: Fungal classification and diversity, Basic fungal morphology and life cycle Fungi in Fermented foods: Health benefits of fermented food, Fermented Fermentation chemistry, Role of molds and yeasts in fermentation processes	15	2
Module 3: Bryophytes		
Introduction to Bryophytes: General classification of bryophytes, concept of algal and fungal origin of bryophytes, variations in thallus structure and reproduction. Fossil bryophytes. Ecology and Economic Importance of Bryophytes: Water relations, adaptations, Role as pollution indicators, Bryophytes as medicine, food and fuel	10	3
Module 4: Biotechnological Applications of Thallophytes		
Industrial and Biotechnological Applications of Algae: algal bioreactor, Biomass Production, lipid production, and other value-added products. Biodiesel / bio-oil production, Algae in wastewater treatment, Fungus: Industrial fermentation-production of enzymes, antibiotic, biopharmaceuticals and drug discovery, Bryophytes:Bryophytes as model organisms, Bryophytes in sustainable agricultural practices, Pharmaceutical and Cosmetic Applications	10	4

Mode of Transaction	 Classroom activities: Direct Instruction: Brainstorming lecture, Explicit Teaching, E-learning, interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative Field & Lab based activities: Identification and collection of thallophytes from the field
Mode of Assessment	 Internal Tests of maximum - 20 marks Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - 10 marks Write a detailed report on a given topic based on research findings -10 marks Semester End Examination – 60 marks

- 1. Schefield WB (1985) Introduction to Bryology, Mermilan Publishing Company. New York
- 2. Webster J and Weber R (2007) Introduction to Fungi, Cambridge University Press
- 3. Robert Edward Lee, 2008. Phycology. Cambridge University Press,
- 4. Shaw.J.A. and Goffinet B., 2000, Bryophyte Biology, Cambridge University Press.

Relevance of Learning the Course/ Employability of the Course

Economic and Biotechnological Opportunities of Thallophyta' helps the students to understand the wonderful world of Thallophyta and its significance in the Biosphere especially for the mankind. The topics covered in this course are relevant for a Biology programme at the undergraduate level.

Тапан зараните	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology (NIPST)			
Programme	4 +1 integrated UG and PG programme			
Course Title	Taming the Invaders: Strategies for Invasive Species Management			
Course Type	MDC			
Course Level	200-299			
Course Code	MG3MDCUBP201			
Course Overview	This course provides a focused exploration of invasive species, emphasizing their identification, ecological impacts, and management strategies. Through three comprehensive modules, students will gain essential knowledge and practical skills needed for effective invasive species management.			
Semester	3 C	redit	3	
Total Student Learning Time	Instructional hours for theory 45		Instructional hours for practical/lab work/field work	
Pre-requisite	Understanding of Environmen	ital Science		

CO No.	Expected Course Outcome Upon completion of this course, students will be	Learning Domains	PSO No.
	able to;		
1	Identify key invasive species and understand their characteristics.	R/U	1
2	Analyze the ecological, economic, and social impacts of invasive species.	U/An	1,3, 4
3	Evaluate various management and control strategies for invasive species.	U/E	1,3, 4
4	Develop and implement a management plan for a specific invasive species.	C/A	1,2,5
5	Apply field techniques for monitoring and controlling invasive species	A/S	2

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1	Hours	CO No
Understanding Invasive Species: Introduction and Definitions, Ecological and Economic Impacts, Overview of global and regional invasive species issues, Identification and Risk Assessment, Use of GIS and remote sensing in invasive species management	10 hr	1,2
Module 2	Hours	
Management Strategies and Techniques:Prevention and Early Detection, Control Methods: Mechanical and Physical Control Methods, Biological and chemical Methods, Integrated Pest Management (IPM), Developing and implementing an IPM plan	20 hr	1,3,4
Module 3	Hours	
Practical Applications and Case Studies: Restoration Ecology, Community Involvement and Education, Policy and Regulation, Real world examples	15 hr	2, 4, 5

Mode of	Classroom activities: Direct Instruction: Brainstorming lecture, Explicit		
Transaction	Teaching, E-learning, interactive Instruction: Active cooperative learning, Seminar,		
	Group Assignments Authentic learning, Library work and Group discussion,		
	Presentation by individual student/ Group representative		
	Field activities:		
	Lab based activities:		
Mode of	1. Internal Tasta of manimum 20 marks		
Assessment	1. Internal Tests of maximum 20 marks		
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a		
	paper and present in the seminar - 10 mark		
	3. Write a detailed report on a given topic based on research findings-10 marks		
	Semester End examination – 60 marks		

- 1. Simberloff, D. (2013). *Invasive Species: What Everyone Needs to Know*. Oxford University Press.
- 2. Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., & Bazzaz, F. A. (2000). *Biotic invasions: causes, epidemiology, global consequences, and control.* Ecological Applications.

Relevance of Learning the Course/ Employability of the Course

Learning "Taming the Invaders: Strategies for Invasive Species Management" provides students with critical knowledge and skills to address the complex challenges posed by invasive species. The course enhances employability across various sectors by preparing students to tackle environmental, economic, and social issues related to invasive species management. Graduates are equipped to make meaningful contributions to biodiversity conservation, ecosystem health, and sustainable development efforts globally.

Terrer Segenerge	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology			
Programme	M.Sc. Botany and Plant Science Technology			
Course Title	Cells in Bloom: Mastering the Techniques of Tissue Culture			
Course Type	VAC			
Course Level	200-299			
Course Code	MG3VACUBP201			
Course Overview	Understanding the basic techniques of plant tissue culture enhances the skill of students in performing basic tissue culture experiments, creating new protocols for the various objectives of plant tissue culture applications, and enables them to pursue a career in this field. This syllabus covers all the basic techniques of tissue culture experiments and general ideas about protocols, methods etc.			
Semester	3	Credit	3	
Total Student Learning Time	Instructional hours for theory 30		Instructional hours for practical/lab work/field work 15	
Pre-requisite	12th standard biology stream	n		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;	-	
1	Understand the general theory about plant tissue culture methods.	R, U	1
2	Analyse the different techniques involved in plant tissue culture	U, An	2,3
3	Develop skill in performing tissue culture experiments.	C,S	3,5
4	Develop novel ideas in applications of plant tissue culture leading to research	E, C	4,5

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S))

COURSE CONTENT

Module 1 : Introduction to Plant Tissue Culture	Hours	CO No
Basic principles of tissue culture: totipotency, callus, differentiation, dedifferentiation, redifferentiation.	15	1,2
Methods of sterilisation, Different types of culture media, Media preparation, Laboratory requirements and organisations, Tools and techniques		
Module 2: Culture Techniques	Hours	
Explant- selection, maintenance, transfer, inoculation, incubation.	10	2
Callus culture, Cell suspension cultures, callus initiation, maintenance, organogenesis, morphogenesis		
Module 3: Plant propagation and Transformation	Hours	

Micropropagation, Somatic embryogenesis, Somaclonal Variation, Synthetic seed, Methods of gene transfer, Embryo rescue, Cryopreservation, Hardening Organ culture, Protoplast culture, Meristem culture	10	2,3
Module 4: Applications of Plant tissue culture	Hours	
Transgenic plants for crop improvement, Commercial floriculture, Commercial horticulture, Secondary metabolite production	10	3,4

Mode of	Classroom activities: Direct Instruction: Brainstorming lecture,			
Transaction	Explicit Teaching, E-learning, interactive Instruction:, Active			
	cooperative learning, Seminar, Group Assignments Authentic			
	learning, Library work and Group discussion, Presentation by			
	individual student/ Group representative			
	Field activities:			
	Lab based activities: Hands on training in plant tissue culture.			
Mode of Assessment	1. Internal Tests of maximum 20 marks			
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar - 10 mark			
	3. Write a detailed report on a given topic based on research findings-10 marks			
	Semester End examination – 60 marks			

1 Bhojwani SS (1983) Plant Tissue Culture: Theory and Practice. Elsevier

2 Dixon RA (2003) Plant Cell Culture, IRL Press.

3 White, P. R. (1943). A handbook of plant tissue culture. LWW.

Relevance of Learning the Course/ Employability of the Course

Cells in Bloom: Mastering the Techniques of Tissue Culture not only provides essential skills in tissue culture techniques but also opens diverse career paths in biotechnology, agriculture, research, and entrepreneurial ventures. Graduates are equipped to contribute to scientific advancements, innovation in agriculture, and biotechnological breakthroughs, making them highly sought after in the global job market.

Terrer Segerence	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Se	cience Technol	logy (NIPST)
Programme	M.Sc. Botany & Plant Scien	nce Technolog	gy
Course Title	An introduction to vascula	r cryptogram	s
Course Type	Minor		
Course Level	200-299		
Course Code	MG4DSCUBP241		
Course Overview	This course is intended to introduce the morphology, anatomy, reproduction and life cycle of Pteridophytes, and Gymnosperms. Moreover study on fossil plants will help to unravel the evolutionary history of plant taxa.		
Semester	4	Credit	4
Total Student Learning Time	Instructional hours for theory 45		actional hours for cal/lab work/field work 15
Pre-requisite	Understanding of basic scie	nce	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;	-	
1	CO1: Comprehensive knowledge in Pteridology, Gymnospersms and Paleobotany	R/U	
2	CO2: Acquire Laboratory skills	S/An	
3	CO3: Understand the ecological and economic importance pteridophytes and gymnosperms	U/An/A	
4	CO4: Student should be able to trace the evolution from fossil plants	R/U/A	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S)) **COURSE CONTENT**

Module 1	Hours	CO No
Pteridophytes:	25 hr	
General characteristics, habitat, classification of pteridophytes		
Type study:		1,2
Distribution, morphology, anatomy, reproduction and life cycle of the following types		
Psilophyta-Psilotum, Lycophyta-Lycopodium, selaginella, Sphaenophyta-Equisetum, Pterophyta-Pteris, Marsilea		
Module 2	Hours	
Gymnosperms: General characteristics, Classification, and distribution of gymnosperms	20 hr	1,2
Type study:		
Distribution, morphology, anatomy, reproduction, life cycle of the following types		
Cycadopsida- <i>Cycas</i> ; Coniferopsida – <i>Pinus</i> ; Gnetopsidae – <i>Gnetum.</i>		
Module 3	Hours	

Paleobotany:Types of fossils, ideal conditions for fossilization, geological time scale.Fossil pteridophytes:Rhynia, LepidodendronFossil gymnosperms:Glossopteris, Williamsonia	10 hr	4
Module 4	Hours	
Ecological, economic, and evolutionary significance of pteridophytes and Gymnosperms.	5 hr	3

Mode of	Classroom activities: Direct Instruction: Brainstorming lecture, Explicit		
Transaction	Teaching, E-learning, interactive Instruction:, Active co-operative learning,		
	Seminar, Group Assignments Authentic learning, , Library work and Group		
	discussion, Presentation by individual student/ Group representative		
	Field activities: Identification and collection of plant specimens from the field		
	Lab based activities: Study of the habit, TS of leaf and stem, morphology of		
	reproductive structures of pteridophytes and gymnosperms		
Mode of	Continuous Internal Assessment (CIA)		
Assessment	1. Internal Tests of maximum 20 marks		
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10		
	3. Write a detailed report on a given topic based on research findings-10 mark		
	Semester End examination – 60 marks		

1Chandra S, Srivastava M, 2003. Pteridology in New Millennium. Kluwer Academic Publishers.

2 Chamberlain C J, 1935. Gymnosperms: Structure and Evolution. Chicago University Press.

3 Taylor T N. Paleobotany: An Introduction to Fossil Plant Biology. Mc Graw Hill, New York.

Relevance of Learning the Course/ Employability of the Course

Helps the students to understand and differentiate between the characteristics of Pteridophytes & Gymnosperms. Paleobotanical information will also unravel the evolutionary history of plant taxa, in both time and space. The topics covered in this course are relevant for a plant science programme at the undergraduate level.

REPUT SPECTURE	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology (NIPST)		
Programme	4 +1 integrated UG and PG progra	mme	
Course Title	Insights into Phytochemical Isolat	ion	
Course Type	SEC		
Course Level	200-299		
Course Code	MG4SECUBP201		
Course	This course explores the principles and practical techniques		
Overview	involved in the isolation and characterization of phytochemicals		
	from plant sources. Students will gain hands-on experience in		
	extraction methods, chromatographic techniques, and		
	spectroscopic analysis used to identify and quantify bioactive		
	compounds from plants.		
Semester	4	Credit	3
Total Student	Instructional hours for	Instruc	tional hours for
Learning Time	theory practical/lab work/field		
6			work

	30	15
Pre-requisite	Basic Chemistry Knowledge, Fu	ndamental Biology Background

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;	_	
1	Understanding of Phytochemical Isolation Techniques	R/U/A	
2	Proficiency in Analytical Methods	U/A	
3	Critical Analysis and Interpretation	U/An/E	
4	Ability to Apply Knowledge in Research and Industry	A/C	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

Module 1	Hours	CO No
Principles of Phytochemical Isolation: Introduction to phytochemicals and their significance Extraction techniques: solvent extraction, steam distillation, and Soxhlet extraction	15	1,4
Module 2	Hours	
Chromatographic Techniques in Phytochemical Analysis: Preparative chromatography: principles and application, Thin-layer chromatography (TLC) and column chromatography, High-performance liquid chromatography (HPLC): theory and applications, Gas chromatography-mass spectrometry (GC-MS): coupling and analysis	20	1,2,4
Module 3	Hours	
Spectroscopic Analysis of Phytochemicals: UV-Vis spectroscopy: application in phytochemical analysis,	10	1,2,3,4

In	frared	(IR)	spectro	oscopy:	principles	and ,
ap	plication	ns,	Nuclear	magneti	c resonance	(NMR)
sp	ectrosco	opy: ł	pasics an	d interpr	retation	

Mode of	Classroom activities: Direct Instruction: Brainstorming lecture, Explicit		
Transaction	Teaching, E-learning, interactive Instruction:, Active cooperative learning,		
	Seminar, Group Assignments Authentic learning, , Library work and Group		
	discussion, Presentation by individual student/ Group representative		
	Lab based activities: Preparation of extracts of Herbs by successive solvent		
	extraction methods to record the percentage yield, Detection of		
	Phytoconstituents by chemical tests, Chromatographic methods (Paper, TLC and		
	column) for separation of compounds from plant extract		
Mode of Assessment	1. Internal Tests of maximum 20 marks		
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a		
	paper and present in the seminar - 10 mark		
	3. Write a detailed report on a given topic based on research findings-10 marks		
	Semester End examination – 60 marks		

1.Houghton, P., & Raman, A. (2012). *Laboratory handbook for the fractionation of natural extracts*. Springer Science & Business Media.

2. Kumar, G. S., & Jayaveera, K. N. (2014). *A Textbook of Pharmacognosy and Phytochemistry*. S. Chand Publishing.

3. Upadhyay, A., Upadhyay, K., & Nath, N. (2003). Biophysical Chemistry Principles & Techniques Handbook.

Relevance of Learning the Course/ Employability of the Course

This course equips students with essential skills to isolate and analyze phytochemicals, enabling them to contribute to fields such as pharmaceuticals, natural products chemistry, and nutraceuticals through informed research and development.

Peret arganera	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	National Institute of Plant Science Technology (NIPST)		
Programme	M.Sc. Botany & Plant Scie	nce Technolog	у
Course Title	Horticulture and nurser	y manageme	nt
Course Type	VAC		
Course Level	200-299		
Course Code	MG4VACUBP201		
Course Overview	This foundational course for undergraduate students offers a comprehensive introduction to horticulture and nursery management. This course is an applied science and knowledge gained by the students helps to improve plant production,		
	marketing, and the quality of human life.		
Semester	4	Credit	3
Total Student Learning Time	Instructional hours for theory 45	Instructional hours for practical/lab work/field work 0	

Pre-requisite	
	Understanding of basic science

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to ;	-	
1	CO1: Understand the significance of crop improvement and human welfare	R/U	
2	CO2: Understand plant propagation methods and become skilful	R/U/S	
3	CO3: Understand and inoculate interest in the nursery management strategies	U/An/A	
4	CO4: Analyse the impact of modern technologies on horticultural plants	R/U/An	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) **COURSE CONTENT**

CO No Module 1 Hours Introduction: Definition, Importance and scope, branches of 15 hr horticulture; Soil- Formation, composition, types, texture, pH and conductivity. 1 Principles of garden making: Pots and containers- Types of potting mixtures and potting media; lawn preparation, Common Garden tools and implements. Module 2 Hours 10 hr Plant propagation methods: Sexual -Seed propagation Asexual-2 Cutting, layering, budding and grafting, Micropropagation; Transplantation and hardening of plants, manures and fertilizers, irrigation methods. Module 3 Hours

Nursery: definition, types; management strategies - planning, layout, budgeting - production unit, sales unit, nursery bed preparation; Nursery structures - greenhouses, fernery, orchidarium, abortorium. Pest management strategies	10 hr	3
Module 4	Hours	
Revolutionary technologies in horticulture: Artificial intelligence, The Internet of Things (IoT), Remote sensing, nuclear technology. Role of biotechnology in crop improvement.	10 hr	4

Mode of	Classroom activities: Direct Instruction: Brainstorming lecture,		
Transaction	Explicit Teaching, E-learning, interactive Instruction: Active co-		
	operative learning, Seminar, Group Assignments Authentic		
	learning, Library work and Group discussion, Presentation b		
	individual student/ Group representative		
	Field activities:		
	Lab based activities:		
Mode of	Continuous Internal Assessment (CIA)		
Assessment	1. Internal Tests of maximum 20 marks		
	2. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Maximum marks 10		
	3. Write a detailed report on a given topic based on research findings -10 mark		
	Semester End examination – 60 marks		

1 Adams C R, Early M P, 2004. Principles of Horticulture. Elsevier, N. Delhi.

2 Kumar N, 1994. Introduction to Horticulture. Rajalakshmi Pub. Nagarcoil

3 Sadhu M K, 1996. Plant Propagation. New age international publishers, N. Delhi

Relevance of Learning the Course/ Employability of the Course

Horticulture and proper nursery management plays a major role in the economy by generating employment, providing raw material to various food processing industries, and higher farm profitability due to higher production and export earnings from foreign exchange